Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 16.796
1.
Elife ; 122024 May 03.
Article En | MEDLINE | ID: mdl-38700991

The discovery of rapid-acting antidepressant, ketamine has opened a pathway to a new generation of treatments for depression, and inspired neuroscientific investigation based on a new perspective that non-adaptive changes in the intrinsic excitatory and inhibitory circuitry might underlie the pathophysiology of depression. Nevertheless, it still remains largely unknown how the hypothesized molecular and synaptic levels of changes in the circuitry might mediate behavioral and neuropsychological changes underlying depression, and how ketamine might restore adaptive behavior. Here, we used computational models to analyze behavioral changes induced by therapeutic doses of ketamine, while rhesus macaques were iteratively making decisions based on gains and losses of tokens. When administered intramuscularly or intranasally, ketamine reduced the aversiveness of undesirable outcomes such as losses of tokens without significantly affecting the evaluation of gains, behavioral perseveration, motivation, and other cognitive aspects of learning such as temporal credit assignment and time scales of choice and outcome memory. Ketamine's potentially antidepressant effect was separable from other side effects such as fixation errors, which unlike outcome evaluation, was readily countered with strong motivation to avoid errors. We discuss how the acute effect of ketamine to reduce the initial impact of negative events could potentially mediate longer-term antidepressant effects through mitigating the cumulative effect of those events produced by slowly decaying memory, and how the disruption-resistant affective memory might pose challenges in treating depression. Our study also invites future investigations on ketamine's antidepressant action over diverse mood states and with affective events exerting their impacts at diverse time scales.


Decision Making , Ketamine , Macaca mulatta , Ketamine/administration & dosage , Ketamine/pharmacology , Animals , Decision Making/drug effects , Antidepressive Agents/pharmacology , Antidepressive Agents/administration & dosage , Male , Injections, Intramuscular , Administration, Intranasal , Behavior, Animal/drug effects
2.
Front Immunol ; 15: 1374486, 2024.
Article En | MEDLINE | ID: mdl-38745651

A universal recombinant adenovirus type-5 (Ad5) vaccine against COVID19 (Ad-US) was constructed, and immunogenicity and broad-spectrum of Ad5-US were evaluated with both intranasal and intramuscular immunization routes. The humoral immune response of Ad5-US in serum and bronchoalveolar lavage fluid were evaluated by the enzyme-linked immunosorbent assay (ELISA), recombinant vesicular stomatitis virus based pseudovirus neutralization assay, and angiotensin-converting enzyme-2 (ACE2) -binding inhibition assay. The cellular immune response and Th1/Th2 biased immune response of Ad5-US were evaluated by the IFN-γ ELISpot assay, intracellular cytokine staining, and Meso Scale Discovery (MSD) profiling of Th1/Th2 cytokines. Intramuscular priming followed by an intranasal booster with Ad5-US elicited the broad-spectrum and high levels of IgG, IgA, pseudovirus neutralizing antibody (PNAb), and Th1-skewing of the T-cell response. Overall, the adenovirus type-5 vectored universal SARS-CoV-2 vaccine Ad5-US was successfully constructed, and Ad5-US was highly immunogenic and broad spectrum. Intramuscular priming followed by an intranasal booster with Ad5-US induced the high and broad spectrum systemic immune responses and local mucosal immune responses.


Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Genetic Vectors , SARS-CoV-2 , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , COVID-19/immunology , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Mice , Humans , Female , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Adenoviridae/genetics , Adenoviridae/immunology , Mice, Inbred BALB C , Administration, Intranasal , Injections, Intramuscular , Immunity, Humoral , Cytokines/metabolism , Immunity, Cellular
3.
AAPS PharmSciTech ; 25(5): 96, 2024 May 06.
Article En | MEDLINE | ID: mdl-38710855

Central nervous system-related disorders have become a continuing threat to human life and the current statistic indicates an increasing trend of such disorders worldwide. The primary therapeutic challenge, despite the availability of therapies for these disorders, is to sustain the drug's effective concentration in the brain while limiting its accumulation in non-targeted areas. This is attributed to the presence of the blood-brain barrier and first-pass metabolism which limits the transportation of drugs to the brain irrespective of popular and conventional routes of drug administration. Therefore, there is a demand to practice alternative routes for predictable drug delivery using advanced drug delivery carriers to overcome the said obstacles. Recent research attracted attention to intranasal-to-brain drug delivery for promising targeting therapeutics in the brain. This review emphasizes the mechanisms to deliver therapeutics via different pathways for nose-to-brain drug delivery with recent advancements in delivery and formulation aspects. Concurrently, for the benefit of future studies, the difficulties in administering medications by intranasal pathway have also been highlighted.


Administration, Intranasal , Blood-Brain Barrier , Brain , Drug Delivery Systems , Administration, Intranasal/methods , Humans , Drug Delivery Systems/methods , Brain/metabolism , Blood-Brain Barrier/metabolism , Animals , Drug Carriers/chemistry , Pharmaceutical Preparations/administration & dosage , Nasal Mucosa/metabolism
4.
AAPS PharmSciTech ; 25(5): 95, 2024 May 06.
Article En | MEDLINE | ID: mdl-38710921

Verapamil hydrochloride (VRP), an antihypertensive calcium channel blocker drug has limited bioavailability and short half-life when taken orally. The present study was aimed at developing cubosomes containing VRP for enhancing its bioavailability and targeting to brain for cluster headache (CH) treatment as an off-label use. Factorial design was conducted to analyze the impact of different components on entrapment efficiency (EE%), particle size (PS), zeta potential (ZP), and percent drug release. Various in-vitro characterizations were performed followed by pharmacokinetic and brain targeting studies. The results revealed the significant impact of glyceryl monooleate (GMO) on increasing EE%, PS, and ZP of cubosomes with a negative influence on VRP release. The remarkable effect of Poloxamer 407 (P407) on decreasing EE%, PS, and ZP of cubosomes was observed besides its influence on accelerating VRP release%. The DSC thermograms indicated the successful entrapment of the amorphous state of VRP inside the cubosomes. The design suggested an optimized formulation containing GMO (50% w/w) and P407 (5.5% w/w). Such formulation showed a significant increase in drug permeation through nasal mucosa with high Er value (2.26) when compared to VRP solution. Also, the histopathological study revealed the safety of the utilized components used in the cubosomes preparation. There was a significant enhancement in the VRP bioavailability when loaded in cubosomes owing to its sustained release favored by its direct transport to brain. The I.N optimized formulation had greater BTE% and DTP% at 183.53% and 90.19%, respectively in comparison of 41.80% and 59% for the I.N VRP solution.


Administration, Intranasal , Brain , Drug Delivery Systems , Drug Liberation , Glycerides , Nasal Mucosa , Particle Size , Verapamil , Administration, Intranasal/methods , Animals , Brain/metabolism , Brain/drug effects , Drug Delivery Systems/methods , Verapamil/administration & dosage , Verapamil/pharmacokinetics , Tissue Distribution , Glycerides/chemistry , Nasal Mucosa/metabolism , Biological Availability , Rats , Calcium Channel Blockers/pharmacokinetics , Calcium Channel Blockers/administration & dosage , Poloxamer/chemistry , Male , Chemistry, Pharmaceutical/methods , Rats, Wistar , Nanoparticles/chemistry
5.
Stem Cell Res Ther ; 15(1): 134, 2024 May 07.
Article En | MEDLINE | ID: mdl-38715091

BACKGROUND: Hypoxic-Ischemic Encephalopathy (HIE) is a leading cause of mortality and morbidity in newborns. Recent research has shown promise in using intranasal mesenchymal stem cell (MSC) therapy if administered within 10 days after Hypoxia-Ischemia (HI) in neonatal mice. MSCs migrate from the nasal cavity to the cerebral lesion in response to chemotactic cues. Which exact chemokines are crucial for MSC guidance to the HI lesion is currently not fully understood. This study investigates the role of CXCL10 in MSC migration towards the HI-injured brain. METHODS: HI was induced in male and female 9-day-old C57BL/6 mice followed by intranasal MSC treatment at day 10 or 17 post-HI. CXCL10 protein levels, PKH26-labeled MSCs and lesion size were assessed by ELISA, immunofluorescent imaging and MAP2 staining respectively. At day 17 post-HI, when CXCL10 levels were reduced, intracranial CXCL10 injection and intranasal PKH26-labeled MSC administration were combined to assess CXCL10-guided MSC migration. MSC treatment efficacy was evaluated after 18 days, measuring lesion size, motor outcome (cylinder rearing task), glial scarring (GFAP staining) and neuronal density (NeuN staining) around the lesion. Expression of the receptor for CXCL10, i.e. CXCR3, on MSCs was confirmed by qPCR and Western Blot. Moreover, CXCL10-guided MSC migration was assessed through an in vitro transwell migration assay. RESULTS: Intranasal MSC treatment at day 17 post-HI did not reduce lesion size in contrast to earlier treatment timepoints. Cerebral CXCL10 levels were significantly decreased at 17 days versus 10 days post-HI and correlated with reduced MSC migration towards the brain. In vitro experiments demonstrated that CXCR3 receptor inhibition prevented CXCL10-guided migration of MSCs. Intracranial CXCL10 injection at day 17 post-HI significantly increased the number of MSCs reaching the lesion which was accompanied by repair of the HI lesion as measured by reduced lesion size and glial scarring, and an increased number of neurons around the lesion. CONCLUSIONS: This study underscores the crucial role of the chemoattractant CXCL10 in guiding MSCs to the HI lesion after intranasal administration. Strategies to enhance CXCR3-mediated migration of MSCs may improve the efficacy of MSC therapy or extend its regenerative therapeutic window.


Administration, Intranasal , Chemokine CXCL10 , Hypoxia-Ischemia, Brain , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Mice, Inbred C57BL , Animals , Chemokine CXCL10/metabolism , Chemokine CXCL10/genetics , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Hypoxia-Ischemia, Brain/therapy , Hypoxia-Ischemia, Brain/metabolism , Hypoxia-Ischemia, Brain/pathology , Mice , Female , Male , Animals, Newborn , Cell Movement
6.
J Clin Psychiatry ; 85(2)2024 May 06.
Article En | MEDLINE | ID: mdl-38722197

Background: Under a risk evaluation and mitigation strategy program, esketamine nasal spray CIII requires self administration at a certified treatment center. Our objective was to identify factors associated with esketamine initiation and continuation.Methods: A retrospective observational cohort study was conducted among US adults who met treatment-resistant depression (TRD) criteria. Cases (n = 966) initiated esketamine between October 11, 2019, and February 28, 2022, and were compared to controls (n = 39,219) with TRD but no esketamine use. Outcomes included initiation, induction (8 administrations within 45 days), and interruptions (30-day treatment gap). Comorbid psychiatric conditions were identified using International Classification of Diseases, Tenth Revision, Clinical Modification, codes.Results: Cases resided significantly closer to treatment centers (8.9 vs 20.3 miles). Compared to 0-9 miles, initiation rate decreased by 11.9%, 50.8%, 68.1%, 75.9%, and 92.8% for individuals residing 10-19, 20-29, 30-39, 40-49, and 50+ miles from a center. After adjustment, factors associated with increased likelihood of initiation were posttraumatic stress disorder, major depressive disorder with suicidal ideation, and male sex, while increasing distance, substance use disorder, Medicaid, Charlson Comorbidity Index (CCI), and older age were associated with lower likelihood. Factors associated with lower likelihood of completing induction were Medicaid, low socioeconomic status (SES), CCI, and Hispanic communities. Factors associated with increased likelihood of interruption were alcohol use disorder, distance, and minority communities, while generalized anxiety disorder and Medicaid were associated with lower likelihood.Conclusions: Travel distance, insurance, low SES, and minority communities are potential barriers to treatment. Alternative care models may be needed to ensure adequate access to care.J Clin Psychiatry 2024;85(2):23m15102.


Depressive Disorder, Treatment-Resistant , Ketamine , Nasal Sprays , Humans , Male , Depressive Disorder, Treatment-Resistant/drug therapy , Female , Ketamine/administration & dosage , Adult , Middle Aged , Retrospective Studies , United States , Antidepressive Agents/administration & dosage , Antidepressive Agents/therapeutic use , Health Services Accessibility/statistics & numerical data , Administration, Intranasal , Young Adult
7.
Medicine (Baltimore) ; 103(18): e38040, 2024 May 03.
Article En | MEDLINE | ID: mdl-38701317

BACKGROUND: Infants undergoing magnetic resonance imaging (MRI) often require pharmacological sedation. Dexmedetomidine serves as a novel sedative agent that induces a unique unconsciousness similar to natural sleep, and therefore has currently been used as the first choice for sedation in infants and young children. OBJECTIVE: To determine the 50% effective dose (ED50) and 95% confidence interval (95%CI) of intranasal dexmedetomidine for MRI in preterm and term infants, and to observe the incidence of adverse events. To explore whether there were differences in ED50 and 95%CI, heart rate (HR) and blood oxygen saturation (SpO2), the induction time and wake-up time and the incidence of adverse events between the 2 groups, so as to provide guidance for clinical safe medication for the meanwhile. METHODS: A total of 68 infants were prospectively recruited for MRI examination under drug sedation (1 week ≤ age ≤ 23 weeks or weight ≤ 5kg). The children were divided into 2 groups according to whether they had preterm birth experience (Preterm group, Atterm group). The Dixon up-and-down method was used to explore ED50. The basic vital signs of the 2 groups were recorded, and the heart rate and SpO2 were recorded every 5 minutes until the infants were discharged from the hospital. The induction time, wake-up time and adverse events were recorded. RESULTS: The ED50 (95%CI) of intranasal dexmedetomidine in the Preterm group and the Atterm group were 2.23 (2.03-2.66) µg/kg and 2.64 (2.49-2.83) µg/kg, respectively (P < .05). the wake-up time was longer in Preterm group (98.00min) than in Atterm group (81.00 min) (P < .05), the incidence of bradycardia in Preterm group was 3/33, which was higher than that in Atterm group (1/35). There was no difference in the induction time between the 2 groups (P > .05), and there was no significant difference in other adverse events. CONCLUSIONS: Intranasal dexmedetomidine can be safely used for sedation in preterm infants undergoing MRI. Compared with term infants, preterm infants have a lower dose of dexmedetomidine, a higher incidence of bradycardia, and a longer weak-up time.


Administration, Intranasal , Dexmedetomidine , Heart Rate , Hypnotics and Sedatives , Infant, Premature , Magnetic Resonance Imaging , Dexmedetomidine/administration & dosage , Dexmedetomidine/adverse effects , Humans , Magnetic Resonance Imaging/methods , Infant, Newborn , Hypnotics and Sedatives/administration & dosage , Hypnotics and Sedatives/adverse effects , Female , Male , Prospective Studies , Heart Rate/drug effects , Oxygen Saturation/drug effects , Dose-Response Relationship, Drug
8.
J Clin Psychiatry ; 85(2)2024 Apr 24.
Article En | MEDLINE | ID: mdl-38696221

Objective: Although individuals with a family history of alcohol use disorder (AUD) have a superior antidepressant response to ketamine, outcomes in patients with current AUD remain unclear. This study sought to investigate whether intranasal (IN) racemic (R,S)-ketamine had antisuicidal and antidepressant effects in unipolar and bipolar depression and whether comorbid AUD conferred superior antisuicidal outcomes for patients.Methods: This was a double-blind, randomized, placebo-controlled trial (May 2018 to January 2022) of single administration, fixed-dose (50 mg) IN (R,S)-ketamine (or saline comparator) in unmedicated inpatients meeting Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision, criteria for a current major depressive episode (bipolar or unipolar), with current suicidal ideation (SI) and past attempt. Patients with and without comorbid AUD were enrolled. Change in Scale for Suicide Ideation score was the primary outcome measure, and change in Montgomery-Åsberg Depression Rating Scale score was the secondary outcome measure.Results: No significant group × time effect was noted for SI (F = 1.1, P = .36). A statistical trend toward superior improvement in suicidality was observed in participants with comorbid AUD. The group × time interaction was significant for improvements in depression (F = 3.06, P = .03) and largely unaffected by comorbid AUD or primary mood disorder type. Within the ketamine group, a significant correlation was observed between improvement in depressive symptoms and SI for patients without comorbid AUD (r =0.927, P = .023) that was absent in patients with AUD (r = 0.39, P = .44).Conclusion: IN ketamine induced rapid antidepressant effects compared to placebo but did not significantly alter SI scores. The treatment was well tolerated. Continued investigation with IN ketamine as a practical alternative to current formulations is warranted.Trial Registration: ClinicalTrials.gov identifier: NCT03539887.


Administration, Intranasal , Alcoholism , Antidepressive Agents , Bipolar Disorder , Depressive Disorder, Major , Ketamine , Suicidal Ideation , Humans , Ketamine/administration & dosage , Ketamine/pharmacology , Double-Blind Method , Male , Female , Bipolar Disorder/drug therapy , Bipolar Disorder/complications , Adult , Pilot Projects , Antidepressive Agents/administration & dosage , Antidepressive Agents/therapeutic use , Depressive Disorder, Major/drug therapy , Alcoholism/drug therapy , Middle Aged , Comorbidity , Treatment Outcome
11.
Harm Reduct J ; 21(1): 93, 2024 May 13.
Article En | MEDLINE | ID: mdl-38741224

Naloxone is an effective FDA-approved opioid antagonist for reversing opioid overdoses. Naloxone is available to the public and can be administered through intramuscular (IM), intravenous (IV), and intranasal spray (IN) routes. Our literature review investigates the adequacy of two doses of standard IM or IN naloxone in reversing fentanyl overdoses compared to newer high-dose naloxone formulations. Moreover, our initiative incorporates the experiences of people who use drugs, enabling a more practical and contextually-grounded analysis. The evidence indicates that the vast majority of fentanyl overdoses can be successfully reversed using two standard IM or IN dosages. Exceptions include cases of carfentanil overdose, which necessitates ≥ 3 doses for reversal. Multiple studies documented the risk of precipitated withdrawal using ≥ 2 doses of naloxone, notably including the possibility of recurring overdose symptoms after resuscitation, contingent upon the half-life of the specific opioid involved. We recommend distributing multiple doses of standard IM or IN naloxone to bystanders and educating individuals on the adequacy of two doses in reversing fentanyl overdoses. Individuals should continue administration until the recipient is revived, ensuring appropriate intervals between each dose along with rescue breaths, and calling emergency medical services if the individual is unresponsive after two doses. We do not recommend high-dose naloxone formulations as a substitute for four doses of IM or IN naloxone due to the higher cost, risk of precipitated withdrawal, and limited evidence compared to standard doses. Future research must take into consideration lived and living experience, scientific evidence, conflicts of interest, and the bodily autonomy of people who use drugs.


Naloxone , Narcotic Antagonists , Humans , Naloxone/administration & dosage , Naloxone/therapeutic use , Narcotic Antagonists/administration & dosage , Narcotic Antagonists/therapeutic use , Drug Overdose/drug therapy , Drug Overdose/prevention & control , Fentanyl/administration & dosage , Opiate Overdose/prevention & control , Analgesics, Opioid/administration & dosage , Administration, Intranasal
12.
Recenti Prog Med ; 115(4): 1-10, 2024 Apr.
Article It | MEDLINE | ID: mdl-38742412

Allergic rhinitis (AR) is a widespread disease, and its prevalence is still growing. AR may be associated with other diseases, including conjunctivitis, rhinosinusitis, asthma, food allergy, and atopic dermatitis. Diagnosis is based on history, physical examination, documentation of sensitization, such as the production of allergen-specific IgE, also using molecular diagnostics in selected patients. Treatments is based on education, engagement, allergen avoidance, non-pharmacological and pharmacological remedies, and allergen-specific immunotherapy (Ait). Symptomatic treatments mainly concern intranasal/oral antihistamines and/or nasal corticosteroids. This article also aims to discuss new management strategies for AR patients. The self-management of allergic rhinitis could include new strategies. In this regard, particular interest should be considered to intranasal corticosteroids and antihistamines without medical prescription, probiotics and other natural substances, and new formulations (tablets) of Ait.


Adrenal Cortex Hormones , Desensitization, Immunologic , Histamine Antagonists , Rhinitis, Allergic , Humans , Rhinitis, Allergic/therapy , Rhinitis, Allergic/diagnosis , Adrenal Cortex Hormones/therapeutic use , Adrenal Cortex Hormones/administration & dosage , Desensitization, Immunologic/methods , Histamine Antagonists/therapeutic use , Histamine Antagonists/administration & dosage , Administration, Intranasal , Allergens/immunology , Immunoglobulin E/immunology , Prevalence
13.
Int J Mol Sci ; 25(7)2024 Apr 02.
Article En | MEDLINE | ID: mdl-38612761

The accumulation of misfolded and aggregated α-synuclein can trigger endoplasmic reticulum (ER) stress and the unfolded protein response (UPR), leading to apoptotic cell death in patients with Parkinson's disease (PD). As the major ER chaperone, glucose-regulated protein 78 (GRP78/BiP/HSPA5) plays a key role in UPR regulation. GRP78 overexpression can modulate the UPR, block apoptosis, and promote the survival of nigral dopamine neurons in a rat model of α-synuclein pathology. Here, we explore the therapeutic potential of intranasal exogenous GRP78 for preventing or slowing PD-like neurodegeneration in a lactacystin-induced rat model. We show that intranasally-administered GRP78 rapidly enters the substantia nigra pars compacta (SNpc) and other afflicted brain regions. It is then internalized by neurons and microglia, preventing the development of the neurodegenerative process in the nigrostriatal system. Lactacystin-induced disturbances, such as the abnormal accumulation of phosphorylated pS129-α-synuclein and activation of the pro-apoptotic GRP78/PERK/eIF2α/CHOP/caspase-3,9 signaling pathway of the UPR, are substantially reversed upon GRP78 administration. Moreover, exogenous GRP78 inhibits both microglia activation and the production of proinflammatory cytokines, tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), via the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway in model animals. The neuroprotective and anti-inflammatory potential of exogenous GRP78 may inform the development of effective therapeutic agents for PD and other synucleinopathies.


Acetylcysteine/analogs & derivatives , Parkinson Disease , Synucleinopathies , Humans , Animals , Rats , Parkinson Disease/drug therapy , Parkinson Disease/etiology , alpha-Synuclein/genetics , Endoplasmic Reticulum Chaperone BiP , Administration, Intranasal , Neuroprotection
14.
Eur J Pharm Sci ; 197: 106766, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38615970

One of the most frequent causes of respiratory infections are viruses. Viruses reaching the airways can be absorbed by the human body through the respiratory mucosa and mainly infect lung cells. Several viral infections are not yet curable, such as coronavirus-2 (SARS-CoV-2). Furthermore, the side effect of synthetic antiviral drugs and reduced efficacy against resistant variants have reinforced the search for alternative and effective treatment options, such as plant-derived antiviral molecules. Curcumin (CUR) and quercetin (QUE) are two natural compounds that have been widely studied for their health benefits, such as antiviral and anti-inflammatory activity. However, poor oral bioavailability limits the clinical applications of these natural compounds. In this work, nanoemulsions (NE) co-encapsulating CUR and QUE designed for nasal administration were developed as promising prophylactic and therapeutic treatments for viral respiratory infections. The NEs were prepared by high-pressure homogenization combined with the phase inversion temperature technique and evaluated for their physical and chemical characteristics. In vitro assays were performed to evaluate the nanoemulsion retention into the porcine nasal mucosa. In addition, the CUR and QUE-loaded NE antiviral activity was tested against a murine ß-COV, namely MHV-3. The results evidenced that CUR and QUE loaded NE had a particle size of 400 nm and retention in the porcine nasal mucosa. The antiviral activity of the NEs showed a percentage of inhibition of around 99 %, indicating that the developed NEs has interesting properties as a therapeutic and prophylactic treatment against viral respiratory infections.


Administration, Intranasal , Antiviral Agents , Curcumin , Emulsions , Quercetin , Curcumin/administration & dosage , Curcumin/pharmacology , Curcumin/chemistry , Quercetin/administration & dosage , Quercetin/pharmacology , Quercetin/chemistry , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Mice , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Swine , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/virology , Respiratory Tract Infections/prevention & control , Nasal Mucosa/metabolism , Nasal Mucosa/drug effects , Nasal Mucosa/virology , SARS-CoV-2/drug effects , COVID-19 Drug Treatment , Humans
15.
Int J Mol Sci ; 25(7)2024 Apr 05.
Article En | MEDLINE | ID: mdl-38612856

PURPOSE: Resveratrol is a natural polyphenol which has a very low bioavailability but whose antioxidant, anti-inflammatory and anti-apoptotic properties may have therapeutic potential for the treatment of neurodegenerative diseases such as multiple sclerosis (MS). Previously, we reported the oral administration of resveratrol nanoparticles (RNs) elicited a neuroprotective effect in an experimental autoimmune encephalomyelitis (EAE) mouse model of MS, at significantly lower doses than unconjugated resveratrol (RSV) due to enhanced bioavailability. Furthermore, we demonstrated that the intranasal administration of a cell-derived secretome-based therapy at low concentrations leads to the selective neuroprotection of the optic nerve in EAE mice. The current study sought to assess the potential selective efficacy of lower concentrations of intranasal RNs for attenuating optic nerve damage in EAE mice. METHODS: EAE mice received either a daily intranasal vehicle, RNs or unconjugated resveratrol (RSV) for a period of thirty days beginning on the day of EAE induction. Mice were assessed daily for limb paralysis and weekly for visual function using the optokinetic response (OKR) by observers masked to treatment regimes. After sacrifice at day 30, spinal cords and optic nerves were stained to assess inflammation and demyelination, and retinas were immunostained to quantify retinal ganglion cell (RGC) survival. RESULTS: Intranasal RNs significantly increased RGC survival at half the dose previously shown to be required when given orally, reducing the risk of systemic side effects associated with prolonged use. Both intranasal RSV and RN therapies enhanced RGC survival trends, however, only the effects of intranasal RNs were significant. RGC loss was prevented even in the presence of inflammatory and demyelinating changes induced by EAE in optic nerves. CONCLUSIONS: The intranasal administration of RNs is able to reduce RGC loss independent of the inflammatory and demyelinating effects on the optic nerve and the spinal cord. The concentration of RNs needed to achieve neuroprotection is lower than previously demonstrated with oral administration, suggesting intranasal drug delivery combined with nanoparticle conjugation warrants further exploration as a potential neuroprotective strategy for the treatment of optic neuritis, alone as well as in combination with glucocorticoids.


Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Nanoparticles , Animals , Mice , Resveratrol/pharmacology , Neuroprotection , Administration, Intranasal , Encephalomyelitis, Autoimmune, Experimental/drug therapy
16.
ACS Infect Dis ; 10(5): 1552-1560, 2024 May 10.
Article En | MEDLINE | ID: mdl-38623820

Tyrosine cross-linking has recently been used to produce nanoclusters (NCs) from peptides to enhance their immunogenicity. In this study, NCs were generated using the ectodomain of the ion channel Matrix 2 (M2e) protein, a conserved influenza surface antigen. The NCs were administered via intranasal (IN) or intramuscular (IM) routes in a mouse model in a prime-boost regimen in the presence of the adjuvant CpG. After boost, a significant increase in anti-M2e IgG and its subtypes was observed in the serum and lungs of mice vaccinated through the IM and IN routes; however, significant enhancement in anti-M2e IgA in lungs was observed only in the IN group. Analysis of cytokine concentrations in stimulated splenocyte cultures indicated a Th1/Th17-biased response. Mice were challenged with a lethal dose of A/California/07/2009 (H1N1pdm), A/Puerto Rico/08/1934 (H1N1), or A/Hong Kong/08/1968 (H3N2) strains. Mice that received M2e NCs + CpG were significantly protected against these strains and showed decreased lung viral titers compared with the naive mice and M2e NC-alone groups. The IN-vaccinated group showed superior protection against the H3N2 strain as compared to the IM group. This research extends our earlier efforts involving the tyrosine-based cross-linking method and highlights the potential of this technology in enhancing the immunogenicity of short peptide immunogens.


Antibodies, Viral , Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Orthomyxoviridae Infections , Tyrosine , Animals , Influenza Vaccines/immunology , Influenza Vaccines/administration & dosage , Mice , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Tyrosine/chemistry , Tyrosine/pharmacology , Influenza A Virus, H1N1 Subtype/immunology , Female , Antibodies, Viral/blood , Antibodies, Viral/immunology , Viral Matrix Proteins/immunology , Viral Matrix Proteins/genetics , Mice, Inbred BALB C , Influenza A Virus, H3N2 Subtype/immunology , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/administration & dosage , Lung/virology , Lung/immunology , Administration, Intranasal , Injections, Intramuscular , Cytokines , Cross Protection , Viroporin Proteins
17.
Int J Biol Macromol ; 267(Pt 2): 131491, 2024 May.
Article En | MEDLINE | ID: mdl-38599435

Quetiapine hemifumarate (QF) delivery to the CNS via conventional formulations is challenging due to poor solubility and lower oral bioavailability (9 %). Similarly, many other second-generation antipsychotics, such as olanzapine, clozapine, and paliperidone, have also shown low oral bioavailability of <50 %. Hence, the present work was intended to formulate QF-loaded biodegradable PLGA-NPs with appropriate surface charge modification through poloxamer-chitosan and investigate its targeting potential on RPMI-2650 cell lines to overcome the limitations of conventional therapies. QF-loaded poloxamer-chitosan-PLGA in-situ gel (QF-PLGA-ISG) was designed using emulsification and solvent evaporation techniques. Developed QF-PLGA-ISG were subjected to evaluation for particle size, PDI, zeta potential, ex-vivo mucoadhesion, entrapment efficiency (%EE), and drug loading, which revealed 162.2 nm, 0.124, +20.5 mV, 52.4 g, 77.5 %, and 9.7 %, respectively. Additionally, QF-PLGA formulation showed >90 % release within 12 h compared to 80 % of QF-suspension, demonstrating that the surfactant with chitosan-poloxamer polymers could sustainably release medicine across the membrane. Ex-vivo hemolysis study proved that developed PLGA nanoparticles did not cause any hemolysis compared to negative control. Further, in-vitro cellular uptake and transepithelial permeation were assessed using the RPMI-2650 nasal epithelial cell line. QF-PLGA-ISG not only improved intracellular uptake but also demonstrated a 1.5-2-fold increase in QF transport across RPMI-2650 epithelial monolayer. Further studies in the EpiNasal™ 3D nasal tissue model confirmed the safety and efficacy of the developed QF-PLGA-ISG formulation with up to a 4-fold increase in transport compared to plain QF after 4 h. Additionally, histological reports demonstrated the safety of optimized formulation. Finally, favorable outcomes of IN QF-PLGA-ISG formulation could provide a novel platform for safe and effective delivery of QF in schizophrenic patients.


Administration, Intranasal , Chitosan , Drug Carriers , Nanoparticles , Polylactic Acid-Polyglycolic Acid Copolymer , Quetiapine Fumarate , Chitosan/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Nanoparticles/chemistry , Quetiapine Fumarate/pharmacokinetics , Quetiapine Fumarate/administration & dosage , Quetiapine Fumarate/chemistry , Quetiapine Fumarate/pharmacology , Humans , Drug Carriers/chemistry , Drug Liberation , Particle Size , Animals , Cell Line , Nasal Mucosa/metabolism , Nasal Mucosa/drug effects
19.
AAPS PharmSciTech ; 25(4): 73, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38575825

The focus of the research was to overcome the limitations of metoclopramide (MTC) when administered intranasally. The aim was to improve its bioavailability, increase patient compliance, and prolong its residence time in the nasal cavity. MTC-loaded liposomes were prepared by applying the film hydration method. A study was conducted to determine how formulation variables affected encapsulation efficiency (EE %), mean particle size (MPS), and zeta potential (ZP). The MTC-liposomes were further loaded into the in situ gel (gellan gum) for longer residence times following intranasal administration. pH, gelling time, and in vitro release tests were conducted on the formulations produced. In vivo performance of the MTC-loaded in situ gels was appraised based on disparate parameters such as plasma peak concentration, plasma peak time, and elimination coefficient compared to intravenous administration. When the optimal liposome formulation contained 1.98% of SPC, 0.081% of cholesterol, 97.84% of chloroform, and 0.1% of MTC, the EE of MTC was 83.21%, PS was 107.3 nm. After 5 h, more than 80% of the drug was released from MTC-loaded liposome incorporated into gellan gum in situ gel formulation (Lip-GG), which exhibited improved absorption and higher bioavailability compared to MTC loaded into gellan gum in situ gel (MTC-GG). Acceptable cell viability was also achieved. It was found out that MTC-loaded liposomal in situ gel formulations administered through the nasal route could be a better choice than other options due to its ease of administration, accurate dosing, and higher bioavailability in comparison with MTC-GG.


Liposomes , Metoclopramide , Rabbits , Humans , Animals , Biological Availability , Administration, Intranasal , Nausea , Lipids , Gels , Particle Size , Drug Delivery Systems
20.
Sci Rep ; 14(1): 8398, 2024 04 10.
Article En | MEDLINE | ID: mdl-38600251

Allergic rhinitis (AR) is caused by type I hypersensitivity reaction in the nasal tissues. The interaction between CD300f and its ligand ceramide suppresses immunoglobulin E (IgE)-mediated mast cell activation. However, whether CD300f inhibits the development of allergic rhinitis (AR) remains elusive. We aimed to investigate the roles of CD300f in the development of AR and the effectiveness of intranasal administration of ceramide liposomes on AR in murine models. We used ragweed pollen-induced AR models in mice. Notably, CD300f deficiency did not significantly influence the ragweed-specific IgE production, but increased the frequency of mast cell-dependent sneezing as well as the numbers of degranulated mast cells and eosinophils in the nasal tissues in our models. Similar results were also obtained for MCPT5-exprssing mast cell-specific loss of CD300f. Importantly, intranasal administration of ceramide liposomes reduced the frequency of sneezing as well as the numbers of degranulated mast cells and eosinophils in the nasal tissues in AR models. Thus, CD300f-ceramide interaction, predominantly in mast cells, alleviates the symptoms and progression of AR. Therefore, intranasal administration of ceramide liposomes may be a promising therapeutic approach against AR by targeting CD300f.


Liposomes , Rhinitis, Allergic , Animals , Mice , Administration, Intranasal , Sneezing , Ceramides , Disease Models, Animal , Rhinitis, Allergic/drug therapy , Immunoglobulin E , Nasal Mucosa , Mice, Inbred BALB C , Ovalbumin
...